
ARMY RESEARCH LABORATORY 

Formulas for the Pressure and Bulk 
Modulus in Uniaxial Strain 

Michael J. Scheidler 

mm 
■X'>>>:ö>::::^>:^V:::::V::äW>ä;:ö> 

ARL-TR-960 February 1996 

^tUX* IBBBBßim 

19960212 125 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMTIED. 



NOTICES 

Destroy this report when it is no longer needed. DO NOT return it to the originator. 

Additional copies of this report may be obtained from the National Technical Information 
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161. 

The findings of this report are not to be construed as an official Department of the Army 
position, unless so designated by other authorized documents. 

The use of trade names or manufacturers' names in this report does not constitute 
indorsement of any commercial product. 



REPORT DOCUMENTATION PAGE Form Approved 
OUB No. 0704-0188 

TSEIcSpTHngTünSnfördTrcölIlcilö«^ 
grtmtng md imlnMnlnfl *» dm iwdod, «d computing and i»vt—Ing th» coWcttan et Inlomndon. SondconirmntsisaardliigthiobiHdonooaimloorinyodwMpoctoflNi 
comcdon of MowMfcm, ttdudlng wggndon« lor rodudnj thl« burdon, to WuMngton Hudqiunara SMVIOM, DtaaonH for Information Oporadon* and Raporta, 121S Jaftaraon 
D«vl» HWnwY. Sulla 1204, ArUnmco, VA 22202-4302, ind to th« OHIce of llimgoniem »nd Budget, Paporwortt Roducdon Prelect(0704-0188), Waahlnaton^OC 20503.  
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

February 1996 
3. REPORT TYPE AND DATES COVERED 

Final, May-July 1995 
4. TITLE AND SUBTITLE 

Formulas for the Pressure and Bulk Modulus in Uniaxial Strain 

6. AUTHOR(S) 

Michael J. Scheidler 

5. FUNDING NUMBERS 

PR: 1L1611102AH43 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES) 

U.S. Army Research Laboratory 
ATTN: AMSRL-WT-TD 
Aberdeen Proving Ground, MD 21005-5066 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

ARL-TR-960 

9. SPONSORING/MONITORING AGENCY NAMES<S) AND ADDRESSES) 10.SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 
12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

For an isotropic elastic solid, the pressure p = pu(p) in a state of uniaxial strain at density p generally differs 
from the pressure p = P|,(p) in a state of hydrostatic stress at the same density. Several researchers have used 
pressure/shear (or oblique plate impact) tests to determine pu and the corresponding uniaxial bulk modulus K„ 
= pdpj/dp. The pressure/shear tests yield uniaxial longitudinal and shear moduli, Lu and Gu, as functions of 
p. A common procedure is to integrate the approximate relation K„ = L^ - 4/3 Gu to obtain the pressure-density 
relation p = pu(p) in uniaxial strain. It is shown here that the integration of this approximate relation between 
the moduli can be avoided altogether by utilizing the exact formula pu = aj - 2/3 [(p/Po)2 -1] Gu, where cx 

denotes the longitudinal stress (positive in compression). The bulk modulus K„ is computed exactly from this 
formula, and the error in approximating it by 1^ - 4/3 Gn is determined. 

14. SUBJECT TERMS 

pressure, bulk modulus, uniaxial strain 

i7.sfeUintvcu&aftaTi6N 
OF REPORT 

UNCLASSIFIED 

i8.4£cdfaTYcwssin6ArKW 
OF THIS PAGE 

UNCLASSIFIED 

«.sfcd&TVcLAisitoATiOf« 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

11 
16. PRICE CODE 

20. UMTATkM OF ABSTRACT 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Sid. 239-18       298-102 



INTENTIONALLY LEFT BLANK. 

11 



Table of Contents 

Page 

1 INTRODUCTION  1 

2 ACCELERATION WAVE SPEEDS     1 

3 HYDROSTATIC STRESS  2 

4 UNIAXIAL STRAIN ,  3 

5 DISCUSSION  5 

6 REFERENCES    7 

DISTRIBUTION LIST  9 

in 



INTENTIONALLY LEFT BLANK. 

IV 



1    INTRODUCTION 

We consider only isotropic elastic materials, and for simplicity thermal effects are 
neglected until §5. Under these conditions, the pressure is typically assumed to be 
a function of density only. However, nonlinear elasticity theory predicts that the 
pressure also depends on the shear strain, although isotropy implies this effect is 
necessarily of second order; cf. Scheidler [1]. In §4 we derive exact formulas for the 
pressure and bulk modulus in a state of uniaxial strain. The effect of shear strain 
can be seen by comparing these results with the corresponding relations for a state 
of hydrostatic stress (§3). Our results are based on exact formulas for the speeds 
of acceleration waves (§2). Applications to the analysis of data from pressure/shear 
tests axe discussed in §5. 

2    ACCELERATION WAVE SPEEDS 

Let F denote the deformation gradient relative to the undeformed and unstressed 
state. The left Cauchy-Green tensor B = FFT has principal values 6, = A.2, where A,- 
are the principal stretches, and 

detF = v/iM = W3 = T,    P = —, (2.1) 
P Po 

where p and p0 denote the densities in the deformed and undeformed state. The 
principal axes of B are the principal axes of strain in the deformed state. Since the 
material is isotropic and elastic, these axes are also the principal axes of the Cauchy 
stress tensor T, and T is an isotropic function of B. This implies that there is a 
single function t such that the principal stresses ^ are given by 

ti = t(bi,bj,bk) = t{bi,bk,bj), (2.2) 

for any permutation i,j,k of 1,2,3; cf. Truesdell & Noll [2, §48]. It follows that the 
pressure 

p = -ltxT = -^(t1+t2 + t3) (2.3) 

is a symmetric function of b^b2,bz. Analogous results hold in terms of the principal 
stretches A,- or in terms of various principal strain measures, e.g., A; - 1, -(b- - 1) 
|(1-1/6,), or In A,, 

The speed £/,• of a longitudinal acceleration wave propagating along the e'th prin- 
cipal axis of strain is given by 

„I     nI 
dti      x  &i        dti 



The speed Uij of a transverse (or shear) acceleration wave propagating along the zth 
principal axis of strain with jump in acceleration parallel to the jth principal axis 
(j =£ i) is given by Ericksen's formula: 

P  ,J        'Vö6,-     dbj 

= 6.-^^,    if   b^bj. (2.5) 
0,-        Oj 

All quantities in (2.4) and (2.5) are evaluated at the wave front. These wave speeds are 
in the deformed material (i.e., Eulerian); the corresponding Lagrangian wave speeds 
are obtained by dividing by A,-. Proofs of (2.4) and (2.5) can be found in Truesdell 
k Noll [2, §74] and Wang k Truesdell [3, §VL5]. These formulae do not require that 
the region ahead of the wave be at rest or in a homogeneous state of strain. However, 
when these conditions are satisfied, (2.4) and (2.5) also apply to the speeds of plane 
infinitesimal sinusoidal waves; cf. Truesdell k Noll [2, §73]. 

3    HYDROSTATIC STRESS 

For a purely dilatational deformation, we have 

bi = p~2/3   and   ti = -p   (t = 1,2,3). (3.1) 

In this hydrostatic stress state, every axis is a principal axis of stress and strain, and 
the pressure p is a function ph of p or p. Here and below, an "A" subscript denotes 
the hydrostatic stress state. From (2.2), (2.4), (2.5)l5 and (3.1), it follows that for a 
given density p there is a single longitudinal wave speed £/,• = UL^h and a single shear 
wave speed U^ = Us<h, and that 

df = ^\-i^ (3-2) 
cf. Wang k Truesdell [3, §VI.5]. A different proof of this well-known result is given by 
Truesdell k Noll [2, §75]. We assume ph is a strictly increasing function of p. Then 
(3.2) implies the longitudinal wave speed is greater than the shear wave speed. With 
the longitudinal, shear, and bulk moduli defined by 

Lh=pU&       Gh = pU& (3.3) 

(3.2) implies the well-known relation 

Kh = Lh- ±Gh. (3.5) 



We use a zero subscript to denote functions evaluated at the undeformed and un- 
stressed state where A,- = 6,- = p = 1; in particular, K0 = L0 - |G0. By (3.4), 

ph/K0 * 05 - 1) + a0G5 - l)2, (3.6) 

where the dimensionless constant aQ is given by 

1    d*ph 
a0 = (3.7) 

2ÄQ  ^2 

4    UNIAXIAL STRAIN 

For a state of uniaxial strain along the 1-axis, 

Ai = )/£=1/&    A2 = A3 = ft2 = 63 = l, (4.1) 

and (2.2) implies t2 = t3. The principal stresses £,- are positive in tension; if <r,- = 
—ti then a,- is positive in compression. We use a V subscript to denote uniaxial 
strain and consider only waves propagating along the 1-axis into a uniaxially strained 
material. The Eulerian wave speed U^ = C/a of a longitudinal acceleration wave is 
given by (2.4) with i — 1, and by (4.1) we also have 

TTo da-, dc-i 

It follows that a longitudinal acceleration wave can propagate only if daxjdp > 0, 
i.e., if o"! is a strictly increasing function of p, which we now assume. By (4.1), the 
material is strained iff p ^ 1 iff bx ^ b2. In this case (2.5)2 and (4.1) imply the following 
formulas for the Eulerian speed UsiU = U12 of a transverse or shear acceleration wave: 

r>   — „772   _ A *i -<2      h-h 
bi-h      1-p2 

<?i — a2 2r 

where r is the shear stress: 

T = l(a1-(72) = |(<2-*1). (4.4) 

The Lagrangian wave speeds are p UUu and p Us<u. If p > 1 the material is in compres- 
sion, and (4.3) implies that a shear acceleration wave can propagate only if ax > <j2. 
When p = 1, the results of the previous section apply, and we have Gu\0 = G0 and 
•^ulo = A)- 



From (4.3) we have the following fundamental formula for the shear stress in 
uniaxial strain: 

r = \{p*-l)Gu. (4.5) 

Since t2 = tz, (2.3) and (4.4) imply the following well-known relation between the 
(compressive) longitudinal stress crx, the shear stress r, and the pressure pu in uniaxial 
strain: 

PU = <T1-*T. (4.6) 

On substituting (4.5) into (4.6), we obtain the following fundamental formula for pu: 

pu = ai-l(p-l)Gu. (4.7) 

We define the bulk modulus Ku in uniaxial strain by 

„  _    dpu      . dpu dpu 

*" = "!;="ip=L°d^- <4-8> 

Then from (4.7) and (4.2), we obtain 

dG,t 
Ku = Lu-iß*Gu-}{p'-l)p- 

= (Lu-IGU)-K~p*-1)HU, (4.9) 

Hu = 2Gu + ^ = l^(pGu). (4.10) 

At p = 1, (4.9) reduces to Ku\0 = L0- |G0 = K0. From (4.9) and (4.10) it follows 
that Ku = Lu — |GU for all p iff Hu = 0 iff Gu = G0/p

2, but there is no reason to 
expect such dependence in general, and thus no reason to expect that Ku = Lu — |GU 

except in the limit of zero strain. Of course, by analogy with (3.5) we could have 
defined Ku to be Lu — |GU, but then (4.8) would not hold. From (4.9) we see that 
for a state of compression, Ku <LU- |GU if Hu > 0, and Ku > Lu - |GU if Hu < 0. 
We assume that pu is a strictly increasing function of p. Then any function of p may 
also be regarded as a function of ax or pu, and by (4.2) and (4.8) we have 

d      _ d d d 

dp        dp        udax 
udpu ' 

The results up to this point are exact. We now consider some useful approximate 
relations. From (4.8) we have 

PJK0K(p-l) + b0(p-iy, (4.12) 

where the dimensionless constant b0 is given by 

, 1    d*pu 

2K0  dp"' 

1    dKu 

2 \dPu 
- 1   . (4.13) 

o 



For use in (4.12)-(4.13), note that (4.9) implies 

dKu 

dPu 

L0 ( dLu 

KQ \ dcrx 

8 dGu 

o     3 dar 

From (3.6)-(3.7) and (4.12)-(4.13), we see that 

Pu « Ph + K0CQ{P - l)2 , 

Pu-Ph _   Pu ~ Ph 

Pu Ph 

where the dimensionless constant CQ is given by 

1 (dKu 

Co(^-l), 

dKu 

dph 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

On comparing (4.16) with equation (4.6) in Scheidler [1], we find that CQ is also given 
by 

Co = 
2 (dGh 

3 \dph 
(4.18) 

5    DISCUSSION 

The longitudinal stress o^ as a function of p in uniaxial strain can be obtained 
from normal plate impact tests. Then the relation (4.6) (which does not rely on the 
assumption that the response is elastic) is typically used to determine the pressure 
pu in uniaxial strain given some assumptions on the shear stress T, or to determine r 
given some assumptions on pu. It is often assumed that pu(p) is equal to the pressure 
Ph(p) in a state of hydrostatic stress at density p (or to some appropriate modification 
of ph to include thermal effects in the shocked state). Such an approximation neglects 
the effects of shear strain (or shear stress) on pu. That this effect may be significant 
in ceramics, geologic materials, and polymers has been emphasized by Gupta [4] 
and Conner [5]. These materials can sustain relatively large elastic shear strains 
(compared to metals), although for polymers viscoelastic effects should also be taken 
into account. Only elastic response is considered here. Then (4.15) implies that pu(p) 
differs from ph(p) by a term of order (p - l)2 unless CQ = 0, which is generally not 
the case. If CQ and Ph(p) are known, then (4.15) provides an approximation to pu to 
within an error of order (p — l)3. The relative error in approximating pu by ph is of 
order p — 1 and can be estimated by using (4.16). 

In a pressure/shear (or oblique plate impact) test, a longitudinal wave propagates 
into the undeformed material, bringing it to a state of uniaxial strain, and a slower 
shear wave propagates into this uniaxially strained material. These tests yield both 
(?i(p) and the shear wave speed UsiU (and hence Gu) as a function of p or <r1.   If 



the shear wave travels at the acceleration wave speed, then (4.5), (4.7), and (4.9) 
provide exact formulas for the shear stress r, the pressure pu, and the bulk modulus 
Ku in uniaxial strain as a function of p or ax. These formulas appear to have gone 
unnoticed, however. Instead, it is usually assumed that Ku « Lu — |C?U. This 
approximate relation, together with (4.8), is then integrated to give pu as a function 
of p; cf. Gupta [4, 6], Conner [5], and Aidun & Gupta [7]. For fused silica in the strain 
range 0 < p — 1 < 0.076, the response is elastic and the shear wave speed decreases 
with /?; cf. Conner [5]. In this strain range the shear wave is an acceleration wave (cf. 
also Abou-Sayed & Clifton [8]), so we may apply the results of §4. Using (4.9) and 
Conner's data, we find that at a strain of p — 1 = 0.076 the estimate Ku w Lu — |GU 

is low by about 29%. 
Whether the shear wave in a pressure/shear test is an acceleration wave or a 

shock wave depends on the nonlinear elastic response of the material; cf. Davison 
[9]. The shear modulus Gu in §4 is defined in terms of the acceleration wave speed 
[/$„, or equivalently, in terms of the speed of a plane infinitesimal sinusoidal shear 
wave; cf. §2. If a shear shock with speed Ü can propagate in the uniaxially strained 
material and if we set G = pÜ2, then the formulas in §4 hold approximately when 
Gu is replaced with G. Also note that if Ü > U$u (as standard stability arguments 
would imply), then G > Gu, and (4.5) and (4.7) imply that r < \{p2 — 1)G and 
Pu > °i — f(/?2 ~ 1)0 m compression (p > 1). 

We conclude with a brief discussion of thermodynamic effects, which have been 
neglected up to this point. If a thermoelastic material conducts heat by Fourier's law 
[respectively, is a nonconductor], then a longitudinal acceleration wave propagates 
at the isothermal [respectively, adiabatic] wave speed. However, the formula (4.3) 
for the speed of a shear acceleration continues to hold in either case; cf. Bowen 
& Wang [10]. In fact, it can be shown that (4.3) holds even if heat conduction 
is governed by Cattaneo's equation, which prohibits instantaneous propagation of 
thermal disturbances. Thus the formulas (4.5) and (4.7) for the shear stress and the 
pressure continue to hold. In particular, they are valid when the state of uniaxial 
strain has been achieved by shock loading. 
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